Funcionamiento de CSMA/CD
El primer paso a la hora de transmitir será saber si el medio está libre. Para eso escuchamos lo que dicen los demás. Si hay portadora en el medio, es que está ocupado y, por tanto, seguimos escuchando; en caso contrario, el medio está libre y podemos transmitir. A continuación, esperamos un tiempo mínimo necesario para poder diferenciar bien una trama de otra y comenzamos a transmitir. Si durante la transmisión de una trama se detecta una colisión, entonces las estaciones que colisionan abortan el envío de la trama y envían una señal de congestión denominada jamming. Después de una colisión (Los host que intervienen en la colisión invocan un algoritmo de postergación que genera un tiempo aleatorio), las estaciones esperan un tiempo aleatorio (tiempo de backoff) para volver a transmitir una trama.
En redes inalámbricas, resulta a veces complicado llevar a cabo el primer paso (escuchar al medio para determinar si está libre o no). Por este motivo, surgen dos problemas que pueden ser detectados:
1. Problema del nodo oculto: la estación cree que el medio está libre cuando en realidad no lo está, pues está siendo utilizado por otro nodo al que la estación no "oye".
2. Problema del nodo expuesto: la estación cree que el medio está ocupado, cuando en realidad lo está ocupando otro nodo que no interferiría en su transmisión a otro destino.
miércoles, 20 de mayo de 2009
CSMA/CD
CSMA/CD, siglas que corresponden a Carrier Sense Multiple Access with Collision Detection (en español, "Acceso Múltiple por Detección de Portadora con Detección de Colisiones"), es una técnica usada en redes Ethernet para mejorar sus prestaciones. Anteriormente a esta técnica se usaron las de Aloha puro y Aloha ranurado, pero ambas presentaban muy bajas prestaciones. Por eso apareció en primer lugar la técnica CSMA, que fue posteriormente mejorada con la aparición de CSMA/CD.
En el método de acceso CSMA/CD, los dispositivos de red que tienen datos para transmitir funcionan en el modo "escuchar antes de transmitir". Esto significa que cuando un nodo desea enviar datos, primero debe determinar si los medios de red están ocupados o no.
Tipos de CSMA/CD [editar]
CSMA/CD (Carrier Sense Multiple Access, acceso múltiple por detección de portadora) significa que se utiliza un medio de acceso múltiple y que la estación que desea emitir previamente escucha el canal antes de emitir. Lo cual es el protocolo de señal eléctrica que se usa. En función de como actúe la estación, el método CSMA/CD se puede clasificar en:
CSMA no-persistente: si el canal está ocupado espera un tiempo aleatorio y vuelve a escuchar. Si detecta libre el canal, emite inmediatamente
CSMA 1-persistente: con el canal ocupado, la estación pasa a escuchar constantemente el canal, sin esperar tiempo alguno. En cuanto lo detecta libre, emite. Puede ocurrir que, si durante un retardo de propagación o latencia de la red posterior a la emisión de la trama emitiera otra estación, se produciría una colisión (probabilidad 1).
CSMA p-persistente: después de encontrar el canal ocupado, y quedarse escuchando hasta encontrarlo libre, la estación decide si emite. Para ello ejecuta un algoritmo o programa que dará orden de transmitir con una probabilidad p, o de permanecer a la espera (probabilidad (1-p)). Si no transmitiera, en la siguiente ranura o división de tiempo volvería a ejecutar el mismo algoritmo. Así hasta transmitir. De esta forma se reduce el número de colisiones (compárese con CSMA 1-persistente, donde p=1).
Una vez comenzado a emitir, no para hasta terminar de emitir la trama completa. Si se produjera una colisión, esto es, que dos tramas de distinta estación fueran emitidas a la vez en el canal, ambas tramas serán incompresibles para las otras estaciones y la transmisión habrá sido un desastre.
Finalmente CSMA/CD supone una mejora sobre CSMA, pues la estación está a la escucha a la vez que emite, de forma que si detecta que se produce una colisión, detiene inmediatamente la transmisión.
La ganancia producida es el tiempo que no se continua utilizando el medio para realizar una transmisión que resultará inútil, y que se podrá utilizar por otra estación para transmitir.
En el método de acceso CSMA/CD, los dispositivos de red que tienen datos para transmitir funcionan en el modo "escuchar antes de transmitir". Esto significa que cuando un nodo desea enviar datos, primero debe determinar si los medios de red están ocupados o no.
Tipos de CSMA/CD [editar]
CSMA/CD (Carrier Sense Multiple Access, acceso múltiple por detección de portadora) significa que se utiliza un medio de acceso múltiple y que la estación que desea emitir previamente escucha el canal antes de emitir. Lo cual es el protocolo de señal eléctrica que se usa. En función de como actúe la estación, el método CSMA/CD se puede clasificar en:
CSMA no-persistente: si el canal está ocupado espera un tiempo aleatorio y vuelve a escuchar. Si detecta libre el canal, emite inmediatamente
CSMA 1-persistente: con el canal ocupado, la estación pasa a escuchar constantemente el canal, sin esperar tiempo alguno. En cuanto lo detecta libre, emite. Puede ocurrir que, si durante un retardo de propagación o latencia de la red posterior a la emisión de la trama emitiera otra estación, se produciría una colisión (probabilidad 1).
CSMA p-persistente: después de encontrar el canal ocupado, y quedarse escuchando hasta encontrarlo libre, la estación decide si emite. Para ello ejecuta un algoritmo o programa que dará orden de transmitir con una probabilidad p, o de permanecer a la espera (probabilidad (1-p)). Si no transmitiera, en la siguiente ranura o división de tiempo volvería a ejecutar el mismo algoritmo. Así hasta transmitir. De esta forma se reduce el número de colisiones (compárese con CSMA 1-persistente, donde p=1).
Una vez comenzado a emitir, no para hasta terminar de emitir la trama completa. Si se produjera una colisión, esto es, que dos tramas de distinta estación fueran emitidas a la vez en el canal, ambas tramas serán incompresibles para las otras estaciones y la transmisión habrá sido un desastre.
Finalmente CSMA/CD supone una mejora sobre CSMA, pues la estación está a la escucha a la vez que emite, de forma que si detecta que se produce una colisión, detiene inmediatamente la transmisión.
La ganancia producida es el tiempo que no se continua utilizando el medio para realizar una transmisión que resultará inútil, y que se podrá utilizar por otra estación para transmitir.
FCS
FCS (Frame Check Sequence - Secuencia de Verificación de Trama)
Campo de 32 bits (4 bytes) que contiene un valor de verificación CRC (Control de redundancia cíclica). El emisor calcula el CRC de toda la trama, desde el campo destino al campo CRC suponiendo que vale 0. El receptor lo recalcula, si el valor calculado es 0 la trama es valida.
Campo de 32 bits (4 bytes) que contiene un valor de verificación CRC (Control de redundancia cíclica). El emisor calcula el CRC de toda la trama, desde el campo destino al campo CRC suponiendo que vale 0. El receptor lo recalcula, si el valor calculado es 0 la trama es valida.
RELLENO
Relleno
Campo de 0 a 46 bytes que se utiliza cuando la trama Ethernet no alcanza los 64 bytes mínimos para que no se presenten problemas de detección de colisiones cuando la trama es muy corta.
Campo de 0 a 46 bytes que se utiliza cuando la trama Ethernet no alcanza los 64 bytes mínimos para que no se presenten problemas de detección de colisiones cuando la trama es muy corta.
DATOS
Datos
Campo de 0 a 1500 Bytes de longitud. Cada Byte contiene una secuencia arbitraria de valores. El campo de datos es la información recibida del nivel de red (la carga útil). Este campo, también incluye los H3 y H4 (cabeceras de los niveles 3 y 4), provenientes de niveles superiores.
Campo de 0 a 1500 Bytes de longitud. Cada Byte contiene una secuencia arbitraria de valores. El campo de datos es la información recibida del nivel de red (la carga útil). Este campo, también incluye los H3 y H4 (cabeceras de los niveles 3 y 4), provenientes de niveles superiores.
TIPO
Tipo
Campo de 2 bytes (16 bits) que identifica el protocolo de red de alto nivel asociado con la trama o, en su defecto, la longitud del campo de datos. La capa de enlace de datos interpreta este campo. (En la IEEE 802.3 es el campo longitud y debe ser menor o igual a 1526 bytes.)
Campo de 2 bytes (16 bits) que identifica el protocolo de red de alto nivel asociado con la trama o, en su defecto, la longitud del campo de datos. La capa de enlace de datos interpreta este campo. (En la IEEE 802.3 es el campo longitud y debe ser menor o igual a 1526 bytes.)
DIRECCION DE ORIGEN
Dirección de origen
Campo de 6 bytes (48 bits) que especifica la dirección MAC de tipo EUI-48 desde la que se envía la trama. La estación que deba aceptar la trama conoce por este campo la dirección de la estación origen con la cual intercambiará datos.
Campo de 6 bytes (48 bits) que especifica la dirección MAC de tipo EUI-48 desde la que se envía la trama. La estación que deba aceptar la trama conoce por este campo la dirección de la estación origen con la cual intercambiará datos.
DIRECCION DESTINO
Dirección de destino
Campo de 6 bytes (48 bits) que especifica la dirección MAC de tipo EUI-48 hacia la que se envía la trama. Esta dirección de destino puede ser de una estación, de un grupo multicast o la dirección de broadcast de la red. Cada estación examina este campo para determinar si debe aceptar la trama (si es la estación destinataria).
Campo de 6 bytes (48 bits) que especifica la dirección MAC de tipo EUI-48 hacia la que se envía la trama. Esta dirección de destino puede ser de una estación, de un grupo multicast o la dirección de broadcast de la red. Cada estación examina este campo para determinar si debe aceptar la trama (si es la estación destinataria).
SOF
SOF (Start Of Frame) Inicio de Trama
Campo de 1 byte (8 bits) con un patrón de 1s y 0s alternados y que termina con dos 1s consecutivos. El patrón del SOF es: 10101011. Indica que el siguiente bit será el bit más significativo del campo de dirección MAC de destino.
Aunque se detecte una colisión durante la emisión del preámbulo o del SOF, el emisor debe continuar enviando todos los bits de ambos hasta el fin del SOF.
Campo de 1 byte (8 bits) con un patrón de 1s y 0s alternados y que termina con dos 1s consecutivos. El patrón del SOF es: 10101011. Indica que el siguiente bit será el bit más significativo del campo de dirección MAC de destino.
Aunque se detecte una colisión durante la emisión del preámbulo o del SOF, el emisor debe continuar enviando todos los bits de ambos hasta el fin del SOF.
PREAMBULO
Preámbulo
Un campo de 7 bytes (56 bits) con una secuencia de bits usada para sincronizar y estabilizar el medio físico antes de iniciar la transmisión de datos. El patrón del preámbulo es:
10101010 10101010 10101010 10101010 10101010 10101010 10101010
Estos bits se transmiten en orden, de izquierda a derecha y en la codificación Manchester representan una forma de onda periódica.
Un campo de 7 bytes (56 bits) con una secuencia de bits usada para sincronizar y estabilizar el medio físico antes de iniciar la transmisión de datos. El patrón del preámbulo es:
10101010 10101010 10101010 10101010 10101010 10101010 10101010
Estos bits se transmiten en orden, de izquierda a derecha y en la codificación Manchester representan una forma de onda periódica.
COMO SE CREA UNA DIRECCION IP
1. Abra el Administrador de clústeres.
2. En el árbol de la consola, haga clic con el botón secundario del mouse en el grupo de recursos de clúster que contendrá el recurso Dirección IP, haga clic en Nuevo y, a continuación, en Recurso.
3. Se iniciará el Asistente para recurso nuevo. En el cuadro Nombre, escriba Dirección IP de, donde NombreEVS es el nombre del servidor virtual de Exchange.
4. En la lista Tipo de recurso, seleccione Dirección IP. Compruebe que el cuadro Grupo contiene el nombre del grupo de recursos apropiado y, a continuación, haga clic en Siguiente.
5. En Posibles propietarios, bajo Posibles propietarios, compruebe que aparecen todos los nodos de clúster que se utilizarán como servidores de Exchange y, a continuación, haga clic en Siguiente.
Cuadro de diálogo Posibles propietarios
6. En Dependencias, en Dependencias de recursos, compruebe que no aparece ningún recurso y, a continuación, haga clic en Siguiente.
7. En Parámetros de dirección TCP/IP, en el cuadro Dirección, escriba una dirección IP estática para el grupo de clústeres.
Nota:
Se recomienda encarecidamente que cada grupo de clústeres tenga una dirección IP estática específica distinta de todos los demás recursos (incluido el recurso Disco de quórum), que se define en el Administrador de clústeres.
8. En el cuadro Máscara de subred, compruebe que la máscara de subred es correcta.
9. En la lista Red, compruebe que se ha seleccionado.
10. Compruebe que la casilla de verificación Habilitar NetBIOS para esta dirección está activada y haga clic en Finalizar. Si NetBIOS se ha deshabilitado para esta dirección, los clientes de red basados en NetBIOS no podrán obtener acceso a los servicios del clúster a través de esta dirección IP.
2. En el árbol de la consola, haga clic con el botón secundario del mouse en el grupo de recursos de clúster que contendrá el recurso Dirección IP, haga clic en Nuevo y, a continuación, en Recurso.
3. Se iniciará el Asistente para recurso nuevo. En el cuadro Nombre, escriba Dirección IP de
4. En la lista Tipo de recurso, seleccione Dirección IP. Compruebe que el cuadro Grupo contiene el nombre del grupo de recursos apropiado y, a continuación, haga clic en Siguiente.
5. En Posibles propietarios, bajo Posibles propietarios, compruebe que aparecen todos los nodos de clúster que se utilizarán como servidores de Exchange y, a continuación, haga clic en Siguiente.
Cuadro de diálogo Posibles propietarios
6. En Dependencias, en Dependencias de recursos, compruebe que no aparece ningún recurso y, a continuación, haga clic en Siguiente.
7. En Parámetros de dirección TCP/IP, en el cuadro Dirección, escriba una dirección IP estática para el grupo de clústeres.
Nota:
Se recomienda encarecidamente que cada grupo de clústeres tenga una dirección IP estática específica distinta de todos los demás recursos (incluido el recurso Disco de quórum), que se define en el Administrador de clústeres.
8. En el cuadro Máscara de subred, compruebe que la máscara de subred es correcta.
9. En la lista Red, compruebe que se ha seleccionado
10. Compruebe que la casilla de verificación Habilitar NetBIOS para esta dirección está activada y haga clic en Finalizar. Si NetBIOS se ha deshabilitado para esta dirección, los clientes de red basados en NetBIOS no podrán obtener acceso a los servicios del clúster a través de esta dirección IP.
DIRECCIONES IP
Una dirección IP es un número que identifica de manera lógica y jerárquica a una interfaz de un dispositivo (habitualmente una computadora) dentro de una red que utilice el protocolo IP (Internet Protocol), que corresponde al nivel de red del protocolo TCP/IP. Dicho número no se ha de confundir con la dirección MAC que es un número hexadecimal fijo que es asignado a la tarjeta o dispositivo de red por el fabricante, mientras que la dirección IP se puede cambiar.
Es habitual que un usuario que se conecta desde su hogar a Internet utilice una dirección IP. Esta dirección puede cambiar cada vez que se conecta; y a esta forma de asignación de dirección IP se denomina una dirección IP dinámica (normalmente se abrevia como IP dinámica).
Los sitios de Internet que por su naturaleza necesitan estar permanentemente conectados, generalmente tienen una dirección IP fija (se aplica la misma reducción por IP fija o IP estática), es decir, no cambia con el tiempo. Los servidores de correo, DNS, FTP públicos, y servidores de páginas web necesariamente deben contar con una dirección IP fija o estática, ya que de esta forma se permite su localización en la red.
A través de Internet, los ordenadores se conectan entre sí mediante sus respectivas direcciones IP. Sin embargo, a los seres humanos nos es más cómodo utilizar otra notación más fácil de recordar y utilizar, como los nombres de dominio; la traducción entre unos y otros se resuelve mediante los servidores de nombres de dominio DNS.
En su versión 6.55, una dirección IP se implementa con un número de 32 bit que suele ser mostrado en cuatro grupos de números decimales de 8 bits (IPv4). Cada uno de esos números se mueve en un rango de 0 a 255 (expresado en decimal), o de 0 a FF(en hexadecimal) o de 0 a 11111111 (en binario). Las direcciones IP se pueden expresar como números de notación decimal: se dividen los 32 bits de la dirección en cuatro octetos. El valor decimal de cada octeto puede ser entre 0 y 255 (el número binario de 8 bits más alto es 11111111 y esos bits, de derecha a izquierda, tienen valores decimales de 1, 2, 4, 8, 16, 32, 64 y 128, lo que suma 255 en total).
Es habitual que un usuario que se conecta desde su hogar a Internet utilice una dirección IP. Esta dirección puede cambiar cada vez que se conecta; y a esta forma de asignación de dirección IP se denomina una dirección IP dinámica (normalmente se abrevia como IP dinámica).
Los sitios de Internet que por su naturaleza necesitan estar permanentemente conectados, generalmente tienen una dirección IP fija (se aplica la misma reducción por IP fija o IP estática), es decir, no cambia con el tiempo. Los servidores de correo, DNS, FTP públicos, y servidores de páginas web necesariamente deben contar con una dirección IP fija o estática, ya que de esta forma se permite su localización en la red.
A través de Internet, los ordenadores se conectan entre sí mediante sus respectivas direcciones IP. Sin embargo, a los seres humanos nos es más cómodo utilizar otra notación más fácil de recordar y utilizar, como los nombres de dominio; la traducción entre unos y otros se resuelve mediante los servidores de nombres de dominio DNS.
En su versión 6.55, una dirección IP se implementa con un número de 32 bit que suele ser mostrado en cuatro grupos de números decimales de 8 bits (IPv4). Cada uno de esos números se mueve en un rango de 0 a 255 (expresado en decimal), o de 0 a FF(en hexadecimal) o de 0 a 11111111 (en binario). Las direcciones IP se pueden expresar como números de notación decimal: se dividen los 32 bits de la dirección en cuatro octetos. El valor decimal de cada octeto puede ser entre 0 y 255 (el número binario de 8 bits más alto es 11111111 y esos bits, de derecha a izquierda, tienen valores decimales de 1, 2, 4, 8, 16, 32, 64 y 128, lo que suma 255 en total).
Suscribirse a:
Entradas (Atom)